
2 I S U G  T E C H N I C A L  J O U R N A L

ASE System Stored Procedures, such as
“sp_help” and “sp_who”, are frequently

used by DBAs and ASE users to perform a
wide variety of tasks. The idea behind
System Stored Procedures (SSPs) is that
they can be executed from any database in
the server, while only a single copy of the
SSP exists in the “sybsystemprocs” database. 

While this principle works very well,
the functionality of the existing tradition-
al SSPs is somewhat limited because they
can only access databases with names that
are specified at compile time, as well as
the executing session’s current database.
Many DBA tasks require a more flexible
functionality. 

This article presents a method for 
constructing a new generation of truly
generic, platform-independent SSPs which
are more flexible and powerful than tradi-
tional SSPs. Based on two little-known
features of Transact-SQL, these new SSPs
can access any number of different data-
bases during a single execution, which
allows very powerful functionality to be
implemented that would otherwise not be
feasible. 

Why Would You Need New SSPs?
In practice, DBA tasks often cover multi-
ple databases in the same server. For
example, existing relations between data
elements in different databases imply that
these databases should not be treated as
isolated entities. Also, common DBA
issues such as database maintenance activ-
ities, administrating database access rights,
etc., often span database boundaries, as
the examples in this article will illustrate. 

Working in different databases tradi-
tionally requires that the T-SQL use 
database command be issued to change
from one database to another. However,
because the use command cannot be part
of a stored procedure (nor of any other
compiled object), DBAs often write their
own tools which are external to the server
(such as Unix shell scripts), to perform
such tasks more efficiently. These 
effectively generate the required T-SQL
statements—including the necessary use
commands—and then execute these 
statements. 

The disadvantage of such operating
system-level tools is that they require
extra development in a non-database lan-
guage, increasing the overall complexity
and cost of the DBA environment. As
these disadvantages do not stop DBAs
from creating such external tools, it 
seems that this class of practical DBA
requirements is not well addressed by
existing SSPs. 

In contrast, the new SSPs presented 
in this article are capable of performing
operations in any number of different data-
bases in a single execution, giving DBAs
more control over multi-database environ-
ments and allowing them to manage cross-
database issues in a more effective manner.
In many cases, these SSPs will also remove
the need for using OS-level tools, making
DBAs more productive.

Note that the new SSPs require
System 10 or later, meaning that practical-
ly all Sybase users can benefit from this
functionality.

Creating a new generation 

of ASE System Stored

Procedures to give DBAs more

control in multi-database

environments

Rob Verschoor is a freelance consul-
tant in The Netherlands, specializing
in Sybase performance and tuning
issues. He can be reached at
rob@sypron.nl.

A New Generation of ASE
System Stored Procedures
By Rob Verschoor



Example: Setting Database Options More Easily
As a simple example, let’s look at the well-known SSP
“sp_dboption,” which is used to set database options (such as
“select into/bulkcopy,” “read only,” etc.). The DBA must
enter a series of commands which looks something like this:

1> use master
2> go
1> exec sp_dboption my_db, "read only", true
2> go
Database option 'read only' turned ON for database 'my_db'.
Run the CHECKPOINT command in the database that was changed.
(return status = 0)
1> use my_db
2> go
1> checkpoint
2> go

Although most Sybase DBAs are familiar with this somewhat
clumsy command sequence, the task of setting database
options can be greatly simplified by using the new SSP
"sp_rv_dboption," which conveniently replaces the entire
command sequence above by just a single SSP call:

1> exec sp_rv_dboption my_db, "read only", true
2> go
Database option 'read only' turned ON for database 'my_db'.
Run the CHECKPOINT command in the database that was changed.
...CHECKPOINT performed in 'my_db’.
(return status = 0)

Note what happens here: The SSP sp_rv_dboption calls the
traditional SSP sp_dboption, but also automatically performs
the checkpoint in the affected database. Furthermore,
sp_rv_dboption can be invoked from any database, not just
from master, as sp_dboption requires. This means it is not nec-
essary to run separate use commands anymore.

This is a major difference with the traditional sp_dbop-
tion. Not only there is less typing to do when setting a data-
base option using sp_rv_dboption, but because the need for
use commands has been eliminated, database options can now
also be modified from stored procedures, which can call
sp_rv_dboption. 

So how does this work? Basically, the trick of sp_rv_dbop-
tion lies in two little-known features of T-SQL.

Feature #1: Controlling The Database Context for an SSP
It is commonly known that SSPs execute within the context
of the database from which they are invoked, even though the
SSPs themselves reside in a different database (sybsystem-
procs). However, the SSP mechanism provides some addition-
al functionality which is not widely known at all. This func-
tionality is illustrated by the following simple SSP
“sp_where_am_i”, which displays the name of the current
database:

1> use sybsystemprocs
2> go
1> create procedure sp_where_am_i 
2> as select db_name()
3> go
1> use my_db
2> go
1> exec sp_where_am_i 
2> go
--------------------------------
my_db

1> exec other_db..sp_where_am_i 
2> go
--------------------------------
other_db

The first call to sp_where_am_i displays “my_db” as expected,
because the SSP is executed from the database my_db. This is
the normal behaviour as we all know it; in fact, this is how
sp_help always shows a list of objects in the current database.

The second call shows the trick: though the current data-
base is still my_db, “sp_where_am_i” surprisingly displays the
name “other_db”. This is because the SSP is executed in the
context of a different database (other_db) by prefixing the
procedure name with the name of that database. 

Traditionally, one would normally first change the data-
base context with the command use other_db, and then issue
exec sp_where_am_i. By calling the SSP in the above manner,
the use command can be avoided while the same effect is
achieved.

There are many practical applications of this feature. For
example, to display the layout of a table in another database,
it is not necessary to change databases anymore, because it is
sufficient to simply run the command exec other_db..sp_help
some_table. (Note: As always, the keyword “exec” can be

T H I R D  Q U A R T E R  1 9 9 9 3

A S E  S Y S T E M  S T O R E D  P R O C E D U R E S



omitted when this is the first command in the batch.) By
avoiding the use command this way, interactive T-SQL 
sessions are more efficient, increasing productivity. It is
remarkable that this feature is so little-known while it has
existed since version 4.x (and probably earlier), which is
probably due to the fact that has not been documented
explicitly until ASE 11.5. 

Feature #2: Executing a Variable Stored Procedure
Sybase System 10 introduced the possibility of executing a
stored procedure by specifying its name through a variable:

1> declare @proc varchar(100)
2> select @proc = "sp_help"
3> exec @proc
4> go

1> declare @proc varchar(100)
2> select @proc = "other_db..sp_help"
3> exec @proc some_table
4> go

This can be seen as a limited way of using “dynamic” SQL,
which is nonetheless quite useful. While this feature is not
formally documented, many Sybase users rely on this func-
tionality, as do some of Sybase’s own SSPs. For these reasons,
this feature is not likely to disappear from future ASE releases.

Putting It Together: sp_rv_dboption
By combining the two T-SQL features shown above,
sp_rv_dboption can be constructed. First, the SSP
“sp_rv_checkpoint” is created. This SSP simply performs a
checkpoint, but by applying feature #1 above (“controlling
the database context”), any database can be checkpointed:

1> use sybsystemprocs
2> go
1> create procedure sp_rv_checkpoint 
2> as checkpoint
3> go

The SSP sp_rv_dboption can now be created as follows (note
that this is a simplified version for clarity) :

1> create procedure sp_rv_dboption 
2>   @db varchar(32),
3>   @opt varchar(32),

4>   @val varchar(32)
5> as
6>   declare @proc varchar(100)
7>   exec master..sp_dboption @db, @opt, @val
8>   select @proc = @db + "..sp_rv_checkpoint"
9>   exec @proc
10>  print "...CHECKPOINT performed in '%1!'", @db
11> go

As can be seen from this code, the two T-SQL features 
discussed above give sp_rv_dboption its special functionality.
First, on line 7, sp_dboption is executed within the context 
of the master database by applying Feature #1, so there is no
need anymore to explicitly change to the master database
with the use command in order to run sp_dboption. Second,
on lines 8/9, the database whose option was set is checkpoint-
ed automatically by using “sp_rv_checkpoint”, combining
both features.

While sp_rv_dboption is a rather simple SSP, it is a good
illustration of how the underlying T-SQL techniques can be
applied. We will now look at more advanced SSPs based on
these same two T-SQL features. All SSPs discussed in this
article will work in any ASE server running version 10 or
later, and are available for download (see end of this article
for the web address).

Execute in All Databases: sp_rv_exec
DBAs often need to perform identical actions in different
databases. For example, to give the new employee “jsmith”
access to five databases, the command sp_adduser 'jsmith'
must be executed five times, once in every database. Another
example is adding a new user-defined datatype: this requires
running a command such as sp_addtype 'newtype', 'char(25)'
in all databases where this datatype is needed. 

Traditionally, one has to run the required command as
many times as needed, issuing use commands in between to
switch databases. When managing a server with a large num-
ber of databases, this can be a rather boring job, for which
DBAs often write shell script-like tools to make their lives a
bit easier.

However, this type of problem can now finally be dealt
with in a much more elegant way, by means of the SSP
"sp_rv_exec," which lets you execute your SSP in all databas-
es in the server with just a single command, no matter how
many databases there are:

4 I S U G  T E C H N I C A L  J O U R N A L

A S E  S Y S T E M  S T O R E D  P R O C E D U R E S



exec sp_rv_exec "sp_adduser", "jsmith"
-- adds user "jsmith" to all databases
exec sp_rv_exec "sp_addtype", "newtype", "char(25)"
-- adds datatype "newtype" to all databases

sp_rv_exec is based on the two T-SQL features discussed
above. Basically, it consists of a loop iterating over the data-
bases which exist in the server. For each database, the SSP
specified as the first parameter is then executed in the context
of that database, along with the other parameters specified.

It may not be desirable to add users or datatypes to certain
databases, such as master or tempdb. While the default behav-
iour is to perform the specified action in all databases in the
server, the scope of action can be limited to a specific set of
databases as required. The downloadable files mentioned
above contain documentation on how to define this.

A Swiss Army Knife for DBAs: sp_rv_findobject
By building additional functionality on top of sp_rv_exec, some
very powerful SSPs have been created; probably the most versa-
tile of these is “sp_rv_findobject”. This SSP basically searches
some or all databases in the server for objects matching a num-
ber of search criteria. Here are some examples:

(1) sp_rv_findobject "name=[Aa]%"

(2) sp_rv_findobject "type=U", "owner!=dbo"

(3) sp_rv_findobject "type=V", "created>=01-May-99"

(4) sp_rv_findobject "coltype=%identity%"

(5) sp_rv_findobject "coltype=%identity%", "display=DB.OW.NM"

(6) sp_rv_findobject "type=UDD", "output=abc"

The first example will print a list of all objects in the server
(i.e. tables, views, rules, triggers, etc.) having a name starting
with “A” or “a”, regardless of the database in which the object
resides. The second example lists all user tables which are not
owned by the database owner. The third will find all views
created after April 30, 1999. As these examples illustrate, 
different search criteria can be specified to form a search 
filter; they combine as a logical “AND”. 

The fourth example will list the fully qualified column
names (e.g., dbname.owner.tablename.colname) of all identity
columns in the server. But suppose we only want a list of the
tables which contain an identity column, and not the column
names themselves. In this case, the “display=” modifier can be
used, as in the fifth example. This specifies which information

should be displayed in the final result; only the fully qualified
table name (e.g., dbname.owner.tablename) is printed; the
column name is suppressed.

By default, the search results are displayed on the client
screen. Instead, by using the “output=” option as in the last
example, the search results are written to a table in tempdb;
in this case, the results table will be named “tempdb..abc”. 

Note that there are more search options than can be 
discussed here; a full overview is included in the download-
able files.

While this server-wide search capability is useful in itself,
the most powerful feature of this SSP is the option to perform
operations on the individual objects found. For example, let’s
assume we want to display the existing indexes on all tables
which have the word “sales” in their names. The first 
example below will find all these tables, and the execute
“sp_helpindex” on each of them:

(1) sp_rv_findobject "name=%sales%", "type=U", 
"exec=sp_helpindex"

(2) sp_rv_findobject "owner=jsmith", "exec=sp_rv_dropobject"

In the second example, we want to drop all objects owned by
user “jsmith”; this person has left the company and did not
clean up the many tables, views, etc., he left hanging around
the various databases. By running the command shown here,
all objects owned by “jsmith” are found. Then, the SSP
“sp_rv_dropobject” is executed for each of these objects.
sp_rv_dropobject is a fairly powerful (or dangerous, depending
on your viewpoint) SSP, which drops any type of object
whose name is passed as a parameter. 

There is hardly a limit as to what is possible: A DBA can
write his own SSPs to perform custom tasks and run these
against objects around the server through “sp_rv_findobject”;
in fact, sp_rv_dropobject is an example of this approach.

Statistics Made Easy: sp_rv_update_statistics
A common DBA task is to ensure that the distribution 
statistics of all indexes be regularly updated using the update
statistics command. Typically, a batch job is created for this
purpose, which runs every now and then to perform “update
statistics” and “sp_recompile” for all user tables in all data-
bases (note that “sp_recompile” is often forgotten!). Because
new user tables may be created, this batch job is usually a
multi-step process which first generates the necessary “update
statistics” and “sp_recompile” statements for all user tables in
every database, and then executes these statements.

T H I R D  Q U A R T E R  1 9 9 9 5

A S E  S Y S T E M  S T O R E D  P R O C E D U R E S



Because this job usually covers different databases, use
commands are traditionally required to change the database
context during this process. Many DBAs have written shell
script-based tools to automate this entire process, so that it
will work correctly regardless of the number of existing data-
bases or tables. 

The SSP “sp_rv_update_statistics”, which is based on
sp_rv_exec, can replace this entire batch job by just a single
command. In its simplest form (the first example below), it
will run “update statistics” and “sp_recompile” on all user
tables in all databases without the need for any other tools:

(1) sp_rv_update_statistics "execute"

(2) sp_rv_update_statistics "generate"

This first example requires ASE version 11.5 or later, because
it uses CIS features to actually perform the update statistics
command. 

When running an earlier version than 11.5, the second
example (with the “generate” parameter) should be used. In
this case, sp_rv_update_statistics will generate the complete
T-SQL script for updating the statistics, which should then be
executed with isql. While the first example is clearly most
convenient, the second example is still a much more efficient
way to generate the required T-SQL statements than the 
traditional approach which uses OS-level tools, external 
to the server.

Who’s Who in the Server: sp_rv_helplogin
Suppose a DBA needs to remove the login “jbrown” from the
server, because this person has left the company. The DBA
executes the command sp_droplogin jbrown, but gets the error
message “User exists or is an alias or is a database owner in 

at least one database.” Unfortunately, this mes-
sage doesn’t indicate in which of the 35 or

so databases in the
server this login

still owns some-
thing, so the

DBA has

no choice but to check each database individually until the
sp_droplogin command succeeds. Needless to say, this isn’t the
most fascinating of tasks.

For this type of problem, “sp_rv_helplogin” is probably
useful. This SSP, also built on top of sp_rv_exec, displays how
a specific login will access each database in the server, i.e., to
which database user this login corresponds in every database.
Furthermore, it shows whether this login still owns any
objects in every database. From this output, it becomes clear
immediately where “jbrown” still had some objects, datatypes
or aliases left, so the DBA doesn’t have to waste time on
working this out. 

To display the database users for “jbrown,” the following
command should be used:

exec sp_rv_helplogin "jbrown"

The main virtue of “sp_rv_helplogin” is that, unlike tradition-
al SSPs, it shows a complete picture of how (i.e., as which
database user) a login will access every database. 

Download and Try It Yourself
All SSPs mentioned in this article are available as copy-
righted freeware, and can be downloaded from  http://
www.euronet.nl/~syp_rob/download.html. 

Due to space limitations, it is not possible to discuss all
aspects of these new SSPs in this article. The downloadable
file contains a detailed reference on the command options
and possible applications.

Relation to ASE 12.0: Execute Immediate
The next major release of ASE (version 12.0, a.k.a. Avatar)
will contain the long-awaited “execute immediate” feature.
This makes it possible to execute a T-SQL command string
which is dynamically created in a character variable. As many
ASE users expect this feature to deliver significant new flexi-
bility, one might wonder whether the existence of the new-
generation SSPs described in this article is still justified.

It certainly is. The “execute immediate” functionality only
overlaps with Feature #2 mentioned earlier (executing a vari-
able stored procedure); Feature #1 (controlling the database
context), being the other building block of these SSPs, is not
related to “execute immediate” at all. Furthermore, “execute
immediate” does not support the use command, while the
new SSPs will also work in ASE versions 10.x to 11.9.x. ■

6 I S U G  T E C H N I C A L  J O U R N A L

A S E  S Y S T E M  S T O R E D  P R O C E D U R E S


