
F O U R T H Q U A R T E R 2 0 0 2 19

When ASE 12.5 was released in
mid-2001, one of its new fea-
tures was a new client tool called

ddlgen. This does what its name suggests:
It generates T-SQL DDL statements for
the objects in an existing database. In
other words, ddlgen reverse-engineers the
schema. Remember that “DDL” stands
for “Data Definition Language” and is
a collective name for statements that
manipulate the schema (but not database
data) such as create table, create procedure,
etc.). I am sure every DBA will see the
potential usefulness of such a reverse-
engineering tool, so I won’t dwell on it.
Instead, I’ll look at the technical details of
ddlgen.

Where to Find ddlgen
ddlgen is a Java application which is exe-
cuted from the OS command line. (Do
not confuse this with the much-promoted
Java-in-ASE feature: ddlgen runs outside
ASE). On Unix, ddlgen is located in
$SYBASE/sybcent32; on Windows, ddl-
gen.bat is located in %SYBASE%\Sybase
Central 3.2. The JRE (Java Run-time
Environment) used by ddlgen is part of the
default ASE installation environment.

Although ddlgen is available to DBAs
as a stand-alone tool, it is also used by
other Sybase tools, including the sybmi-
grate tool (new in 12.5.0.1) and the Java
version of Sybase Central.

How ddlgen Works
ddlgen can reverse-engineer individual
database objects or entire databases in an
ASE server. For example (% indicates the

Unix command prompt; “#” indicates a
comment):

reverse-engineers the entire database 'prod'
% ddlgen -Ulogin1 -Ppswd -Spluto:5001 -Dprod

ddlgen will print all required create state-
ments that are needed to recreate the cur-
rent schema in database “prod” (note that
ddlgen does not include any drop state-
ments). By default, ddlgen prints the gen-
erated DDL statements to the standard
output. This quickly becomes a lot of text:
Even for a simple 1-column table, ddlgen
generates 21 lines of output (partly
because it includes additional comment
lines for better readability of the DDL).

Please note that we cannot include the
results of the examples in this article due
to space limitations—readers are warmly
invited to try out ddlgen for themselves!

Command Options
ddlgen accepts a number of command-line
options which allow only specific objects
to be reverse-engineered. The most impor-
tant options are –D, to specify a database;
–T, to specify the type of database object,
and –N, to specify a wildcard for matching
object names. For example, to generate
DDL for all user tables in database “prod”
whose names start with a the letter “A”:

reverse-engineers the entire database 'prod'
% ddlgen -Ulogin1 -Ppswd -Spluto:5001 –Dprod
–TU –NA%

This is the full list of object types that can
be used with the –T flag:

Generating DDL Statements
with ddlgen
By Rob Verschoor

Taking a closer looking at

ASE’s new client tool

Rob Verschoor is a freelance consul-
tant in The Netherlands, specializ-
ing in Sybase ASE. He can be
reached at rob@sypron.nl.

20 I S U G T E C H N I C A L J O U R N A L

C – cache I – index RS – remote server

DB – database KC – primary/unique
key constraints SG – segment

D – default TR – trigger

DBD – database device L – login U – table

DPD – dump device P - stored procedure UDD – user-defined
datatype

EC – execution class R – rule USR – user

EG – engine group RI – RI constraints V – view

GRP – user group RO – role XP – extended stored
procedure

As shown in the above table, server-level objects such as
logins and roles can also be reverse-engineered:

reverse-engineers all ASE logins
% ddlgen -Ulogin1 -Ppswd -Spluto:5001 -TL -N%

The command options –X and –F allow additional filtering in
combination with –T.

The full set of ddlgen command options is as follows:
–U login_name: The login name used to connect to ASE
–P password: The login password
–S hostname:port_nr: Hostname and port number of the ASE
server to connect to
–D db_name: The database name; if omitted, defaults to the
default database of the connecting login
–T object_type: The object type to be reverse-engineered (see
table above; the default type is DB)
–N object_name: Must always be used with –T to specify the
object name. This may contain wildcards or may be a fully
qualified name (i.e., db_name.owner.table_name[.index]). By
default, specify –N%.
–XOU or –XOD: These options are used in combination
with –TU: with –XOU, only user tables are included; with
–XOD, only proxy tables. Specifying just –TU, without –X,
includes both user tables and proxy tables.
-F{TR|I|KC|RI|%}: For user tables only, does not generate
DDL for triggers (TR), indexes (I), primary/unique key con-
straints (KC), or RI constraints (RI) for those table(s). These
options may be combined with commas. % excludes all of the
above; –F alone has no effect.
–O output_file: Output file name for the generated DDL
(default=stdout)
–E error_file: File to log errors into
–J character_set: Client character set
–v: Displays ddlgen version information

Reverse-Engineering #temp Tables
Although this capability is undocumented, ddlgen will gener-
ate DDL for #temporary tables owned by other sessions. To do
this, specify the tempdb database and use a wildcard or specify
the full table name:

reverse-engineers all #temp tables
% ddlgen -Usa - Ppswd -Spluto:5000 -Dtempdb -TU -N#%

reverse-engineers only #t___________00000160012632096
% ddlgen -Usa - Ppswd -Spluto:5000 -Dtempdb -TU -
N#t___________00000160012632096

Apart from writing custom queries against the tempdb system
tables, there are hardly any other methods to reverse-engineer
a #temporary table. This functionality may not immediately
be relevant, but I remember at least one situation where it
would have been useful to quickly see the schema of a #temp
table. For more information about #temp tables, see an earlier
article on this topic at www.sypron.nl/temptab.html.

Caveats and Gotchas
1) The first version of ddlgen was shipped as part of ASE

12.5. Unfortunately, this first version contained some dis-
turbing bugs in the generated DDL. These bugs are fixed
in later releases, and I therefore recommend everyone to
upgrade to at least 12.5.0.1.

To check your version of ddlgen, run ddlgen –v (NT:
ddlgen.bat –v). The 12.5 GA version of ddlgen will print a
single line saying:

% ddlgen -v
Product Release Version: 1.0, for ASE 12.5

The 12.5.0.1 version of ddlgen prints a more complete
version string as well as the standard Sybase copyright
notice:

% ddlgen -v
Sybase DDLGen Utility/12.5.0.1/IR Build 1/I/1.2.2/rel125x/Tue Jan 29
12:08:47 2002

[...Sybase Copyright Notice omitted...]

2) The Java background of ddlgen is clearly visible: As
illustrated by the examples in this article, ddlgen requires
that the ASE server be specified as a host address and port
number (i.e., JDBC-style). This is a bit inconvenient as
ASE DBAs are used to specifying an ASE servername

G E N E R A T I N G D D L S T A T E M E N T S W I T H D D L G E N

F O U R T H Q U A R T E R 2 0 0 2 21

instead. Let’s hope this will be fixed soon. In the mean-
time, the quickest way to find the ASE server’s port
number is to run the query select * from master..syslisteners
(when you’re using TLI—on Solaris for example—you
need a more complex query instead: See www.sypron.nl/
quiz2002a.html#may02 for details).

3) For some reason, ddlgen does not tolerate any spaces
between a command parameter flag and its value. For
example, ddlgen -U sa (with a space between -U and sa) will
result in an error: You must specify -Usa without a space.

4) When using the –T option to specify an object type, –N%
must always be specified as well. Omitting –N% will cause
an error message to be printed.

What ddlgen Does Not Do
Despite its usefulness, it is no surprise that ddlgen has some
limitations as well:
◆ ddlgen cannot reverse-engineer compiled objects whose

source code has been encrypted with sp_hidetext.
◆ For logins and roles, ddlgen does not reverse-engineer the

passwords (which are stored in an encrypted form).
◆ ddlgen does not reverse-engineer external logins or remote

logins.
◆ ddlgen does not always take all object dependencies into

account. See the next section for more information.

Dependencies Between Objects
Ideally, the generated DDL should be able to execute without
any errors. A classic problem for reverse-engineering tools are
the dependencies between database objects. For example,
when procedure P reads from table T, the DDL for table T
should be generated before the DDL for procedure P—other-
wise an error will result when the DDL for P is executed
because table T does not yet exist.

ddlgen does a reasonable job of taking object dependen-
cies into account, but it’s not perfect. When your generated
DDL gives you errors, the simplest remedy is to run the DDL
again. The objects that could not be created the first time
because other objects had yet not been created, will be creat-
ed the second time (this is possible because ddlgen does not
include drop statements in the generated DDL). The disad-
vantage of this method is that it’s messy. During the second
execution of the DDL, for each table, index, stored procedure,
etc., there will be an error message complaining that the
object already exists. This may make it more difficult to deter-
mine whether all objects have finally been created correctly.

Alternatively, you may also explicitly reverse-engineer the

database object by type using the –T and –F command
options (see above).

The Classic “Procedure Table” Problem
A classic problem is stored procedures referring to a table
created outside the procedure. ddlgen does not solve this
problem. Example:

create table #t1 (a int)
go
create procedure p as
select * from #t1
go

The create table statement must be executed first, or creating
the procedure will fail because table #t1 is missing.

ddlgen will happily reverse-engineer procedure “p,” but
this will not include the create table statement. This means
that when the generated DDL for procedure “p” is executed,
it will result in an error because table #t1 does not exist.
The background is that ddlgen retrieves the SQL text from
syscomments, which does not include the create table state-
ment because it is not part of the SQL text for the stored
procedure. DBAs should handle such cases by maintaining
their own DDL scripts containing both the create table and
the create procedure statements.

Backward Compatibility
As mentioned in the introduction, ddlgen was introduced
in ASE 12.5. However, ddlgen also works on earlier ASE
versions, albeit with certain limitations. Please note that the
information below has been determined empirically. ddlgen
is formally only supported on ASE 12.5 or later.

As far as I have been able to determine, ddlgen works fine
on ASE 12.0 for all types of objects.

On ASE 11.9 and 11.5, some objects can be reverse-
engineered, but others can’t. For example, user tables cannot
be reverse-engineered in pre-12.0 servers because ddlgen
expects the column sysindexes.identitygap to exist (so the
ddlgen query fails). Other objects, such as indexes, logins,
roles, or caches can be reverse-engineered successfully in
11.9 and 11.5 servers.

I have not been able to run ddlgen against ASE 11.0;
connectivity problems seem to stop ddlgen from successfully
connecting. ■

G E N E R A T I N G D D L S T A T E M E N T S W I T H D D L G E N

