
Worldwide Uniqueness:
GUIDs/UUIDs
Starting with ASE 12.5.0.3, it is possible
to generate so-called GUIDs with the
newid() built-in function. A GUID
(Globally Unique Identifier) is a 16-byte
(128-bit) value, generated according to
the GUID/UUID specification. This speci-
fication was drafted by the Internet
Engineering Task Force (IETF). It is wide-
ly accepted as a standard, and can be
found at http://ftp.ics.uci.edu/pub/ietf/web-
dav/uuid-guid/. GUIDs are also known as
UUIDs (Universally Unique Identifiers).
In this book, GUID is used.

The uniqueness of a GUID is not lim-
ited to a particular database or server: mul-
tiple ASE servers running on the same
host will produce different GUID values.
By design, GUIDs generated by software
products from different vendors will never
be identical. Please refer to the GUID
specification for details about the underly-
ing principles.

Note that there is actually a limit to
the GUID’s uniqueness. According the
GUID specification, the current design is
valid until the year 3400; this seems suffi-
cient for most practical requirements.

The 'newid()' Function
The newid() function generates a 16-byte
GUID value, formatted as a hexadecimal
varchar(36) expression:

1> select newid()
2> go

fc1706e141e44c6a966842133ef94e73

Note that the above string contains only
32 characters. When specifying “1” (or
any other non-zero integer value) as an
argument to newid(), the GUID will be
formatted with four additional dash (“-”)
characters:

1> select newid(1)
2> go

10d1eaff-f116-45c7-95a9-44b5fc6dc351

This formatted version of a GUID may be
easier to handle for a human. Note that
other vendors use this formatting conven-
tion by default (for example, MS SQL
Server). The positions of the dashes are
prescribed by the GUID specification.

Why GUID Uniqueness is Guaranteed
Worldwide
GUIDs can be useful because their values
are guaranteed to be unique in all other
systems as well. This means that GUIDs
can safely be used as worldwide-unique
keys when exchanging data between dif-
ferent systems or databases (obviously, all
systems involved must support GUIDs in
the first place). In a sense, a GUID can be
thought of as a primary key that is valid
across all existing applications and data-
bases over a long period of time.

Note that the universal uniqueness of
a GUID applies only when compared with
other GUIDs. Nothing would stop you
from generating an arbitrary, non-GUID
compliant, 16-byte value, which might
well be a duplicate of a GUID generated
by some other system on this planet.

Generating Keys for Multiple-Row
Inserts
Like other built-in functions, newid(1)
produces a constant value for all rows in
a result set:

1> select newid(1) GUID, EmpName from
Employees
2> go

GUID

EmpName

T H I R D Q U A R T E R 2 0 0 3 13

Excerpts from a new

book on getting the most

out of ASE

Tips, Tricks, and Recipes for Sybase ASE
By Rob Verschoor

Rob Verschoor is a freelance
consultant in the Netherlands,
specializing in Sybase ASE, and
the author of several books. He
can be reached at rob@sypron.nl.

< B O O K E X C E R P T >

5e009fe6-fcff-44ac-94b2-0ece43f73d18 Gomez
5e009fe6-fcff-44ac-94b2-0ece43f73d18 Smith
5e009fe6-fcff-44ac-94b2-0ece43f73d18 Anderson
5e009fe6-fcff-44ac-94b2-0ece43f73d18 Stewart
5e009fe6-fcff-44ac-94b2-0ece43f73d18 McGuire
5e009fe6-fcff-44ac-94b2-0ece43f73d18 NULL
[...]

Unlike most other built-in functions, newid() can also produce
unique values for each row in the result set. The trick is to
specify an argument to newid() which always evaluates to > 0,
but is not a constant. This is achieved by including a column
reference in the expression.

The following is equivalent to newid() but forces the func-
tion to be evaluated for each row:

1> select newid((aasscciiii((EEmmppNNaammee))) GUID, EmpName
2> from Employees
3> go

GUID EmpName

1384c4da-b584-4d7d-a8f8-abf49ec7e84f Gomez
1f00cfb7-6de3-4934-9417-50cb5470463e Smith
3330bbfb-323e-4c49-bc82-c5f6c37317c5 Anderson

981eddb7-79bc-4943-80b1-96cdc22375d8 Stewart
f73f8542-7936-4c00-9caf-1c5b2a8784bd McGuire
7bd25b1663414e5682c1ab6a5923e1c9 NULL
[...]

In this example, the ASCII value of the first character of each
employee name is specified as an argument to newid(). Since
an ASCII value is always greater than 0, the resulting GUID
will be formatted. More importantly, newid() now produces a
unique value for each row in the result set.

If you prefer an unformatted GUID, the argument to
newid() should be a non-constant expression evaluating to 0 or
NULL. Example:

select newid((aasscciiii((EEmmppNNaammee))//11000000)) GUID, EmpName [...]

For a formatted GUID, the newid() argument must be not be 0
or NULL. The ASCII value of the first character of a column
is sufficient for this, unless the column contains NULL (as
illustrated by the last row in the example result set above).
For a (var)char column allowing NULLs, use isnull() to avoid
a NULL result:

select newid((aasscciiii((iissnnuullll((EEmmppNNaammee,,'''')))) GUID, EmpName [...]

Columns containing numbers can be used as an argument to
newid(), via abs(). The following examples produce formatted
and unformatted GUIDs, respectively:

select newid((aabbss((iissnnuullll((NNuummCCooll,,11)))+1) GUID, EmpName [...]------------------
select newid((aabbss((NNuummCCooll))--aabbss((NNuummCCooll))) GUID, EmpName [...]

Implicit Key Generation (Column Default)
A GUID key can also be generated implicitly by placing
newid() in a column default:

create table Customers
(CustID varchar(36) ddeeffaauulltt nneewwiidd((11)) unique,
CustName varchar(30))

-- Key value is generated implicitly by the column default
insert Customers (CustName) values ("Jones")

With this column default, only one row can be inserted at a
time without an explicitly specified key value. As a column
reference is not allowed in a default, multiple rows inserted
with an insert. . .select statement will all have the same key
(though the unique index will not allow this).

Note that key values can still be specified explicitly in
insert statements, overriding the column default.

Notes and Remarks
◆ When using a GUID as a key column, you can choose

between the 32-character unformatted value and the 36-
character formatted value. While 32 characters require
about 11% less space, 36 characters is perhaps a better
choice when these values are ever exchanged with other
systems, since other applications may use the formatted
version by default.

◆ Two ASE servers on the same host should generate a dis-
joint set of GUID values. The GUID specification sug-
gests using the host system’s network card hardware
address (MAC address) for this purpose, but ASE uses
@@nodeid instead. @@nodeid is a unique, 12-character
identifier used by ASTC/DTM for managing distributed
transactions. It is unique for each ASE server.

◆ The built-in function rand() produces predictable numbers
when using a seed. In contrast, the results from newid() will
always be different. This makes newid() probably the only
feature in ASE whose behavior cannot be reproduced exact-
ly. When you think about it, this is actually quite special…

14 I S U G T E C H N I C A L J O U R N A L

T I P S , T R I C K S A N D R E C I P E S F R O S Y B A S E A S E

Terminating Your Own Connection with syb_quit()
Sometimes there may be a requirement to terminate your own
user process from T-SQL code. The kill command cannot be
used for this purpose, because it will not operate on its own
user process.

To terminate your own process, use the built-in function
syb_quit(). When syb_quit() is executed, ASE will disconnect
the connection immediately, and any subsequent statements
in the stored procedure, trigger, or batch will not be executed
anymore. An open transaction is rolled back.

As a built-in function, syb_quit() is executed by running a
select statement on it:

% isql -Usa -Pbigsecret -SSYB125
1> sseelleecctt ssyybb__qquuiitt(()) -- life stops here ...
2> print "After syb_quit()" -- this is never executed
3> go
CT-LIBRARY error:

ct_results(): network packet layer: internal net library
error: Net-Library operation terminated due to disconnect

In the above code, the print statement on line 2 will never be
executed because the connection to ASE will already have
been terminated as a result of syb_quit() on line 1. Note the
error messages printed by the client, in this example isql
(other clients may print different messages). The client does
not know the effect of the statements sent to ASE, but it
soon discovers that the server has terminated the client’s
connection. Since this is an unexpected event for isql, it
will print an error message (something similar happens when
executing shutdown from isql).

syb_quit() was introduced in ASE 12.0. No special permis-
sions are required to execute it, so it is available to all users. It
is unclear to me why this useful built-in function has
remained undocumented. In my experience, syb_quit() is
harmless and does not cause any problems. In fact, it is used
in Sybase’s own installhasvss (NT: insthasv) script, which
installs the system stored procedures needed for the High
Availability functionality.

Why Quit Your Own Session?
Abruptly terminating your own session may seem an odd
thing to do. Nevertheless, this can be useful functionality.
Here are some examples of how syb_quit() can be used:
◆ Conditional script exit
Suppose you’re writing a T-SQL script to create some stored
procedures. Before actually creating those procedures, you
may want to verify that certain conditions are met, and abort

the script if this is not the case. For example, it may be
required that the script is only executed by a login with
sa_role privilege, or that a database with a specific name must
exist. Alternatively, you may want to ensure the script is exe-
cuted against a certain ASE version: for example, when the
code uses the “execute-immediate” feature, ASE 12.0 or later
is required.

Without aborting the script, error messages would be
printed when ASE runs into syntax errors or permission prob-
lems. Instead, aborting the script with a clear error message is
a much more user-friendly solution. This example shows how
to implement such functionality with syb_quit():

set flushmessage on
go

-- Check: we must be on ASE 12.0 or later
if isnull(object_id("dbo.sysqueryplans"),99) >= 99
begin

print "This script requires ASE 12.0+; quitting..."

sseelleecctt ssyybb__qquuiitt(())
-- this line will never be reached

end
go

-- Check: we must have 'sa_role' activated
if proc_role("sa_role") = 0
begin

print "This script requires 'sa_role'; quitting…"
sseelleecctt ssyybb__qquuiitt(())
-- this line will never be reached

end
go

-- Check: database 'PROD_DB' must exist
if db_id("PROD_DB") = NULL
begin

print "Database 'PROD_DB must exist; quitting…"
sseelleecctt ssyybb__qquuiitt(())
-- this line will never be reached

end
go
use PROD_DB -- now we know this database exists!
go

-- All checks OK; now we can go ahead with our script...
create procedure my_proc
as
...T-SQL-commands...
go

T H I R D Q U A R T E R 2 0 0 3 15

T I P S , T R I C K S A N D R E C I P E S F R O S Y B A S E A S E

Note that this code cannot be used in pre-12.0 versions
because syb_quit() is a known function only in 12.0+. Hence,
it will cause a syntax error in pre-12.0. If this code should also
work for pre-12.0, use the method with set background,
described below, instead.

Also note two other interesting features in this code: set
flushmessage on ensures any printed warning messages will not
be lost while disconnecting; the test for ASE 12.0 is based on
the existence of a version-specific system table.

◆ Conditionally blocking ASE access
Under certain conditions, you may want to deny a client
process access to the ASE server. For example, there could be a
rule that employees may only run a certain application during
office hours. This could be implemented by building a check
into the application to determine whether the ASE login is
currently allowed access; if not, it simply calls syb_quit() to ter-
minate its connection, thus effectively blocking access to ASE:

if datepart(dw, getdate()) in (1,7) -- Sunday, Saturday
or datepart(hh, getdate())

not between 9 and 18 -- outside 9AM to 6PM
begin

set flushmessage on
print "Access is allowed during working hours only!"
select syb_quit()

end

In a variation on this theme, a login trigger is used to imple-
ment this kind of functionality. A login trigger is basically a
stored procedure that is executed as part of the login process
when a client connects to ASE. By executing syb_quit() in the
login trigger, the login attempt fails. See www.sypron.nl/
logtrig.html for further examples of using login triggers.

◆ Emergency exit from nested SQL code
Yet another way of using syb_quit() is to use it as an emergency
exit from SQL code. For example, a weird, unlikely kind of
error is encountered in a deeply nested piece of SQL—let’s
say there appear to be two rows for a certain primary key
(someone has dropped the unique index on this key?). Due to
the severity of the error, there may be no point in continuing
execution, and all action in this session should be aborted
immediately. This rather drastic exit can be implemented by
simply calling syb_quit(), without backing out from each of the
nested code levels.

Please note that I do not recommend this method as a
standard practice: in general, I believe that error checking
and backout actions deserve attention, and are worth spend-

ing code on. This application of syb_quit() is probably best
suited for tool-style SQL code used by DBAs rather than for
production code. To be used with care!

set background: syb_quit() for ASE Pre-12.0
syb_quit() was introduced in ASE 12.0, so it cannot be used in
pre-12.0. Functionality equivalent to syb_quit() can be imple-
mented in all ASE versions with the undocumented and
unsupported command set background.

I have never seen any “official” documentation or applica-
tion of set background by Sybase, so the information in this
book was determined empirically. Still, set background seems
reliable when used for the purposes described here.

The most obvious effect of set background on suppression of
all output to the client, and sending some (but not all) output
to the ASE errorlog instead. set background off resumes the
normal output stream to the client.

Although there are some practical applications of sup-
pressing output to the client, we’ll be using a different aspect
of set background in this section.

Terminating Your Connection with set background
set background on and set background off are expected to occur in
the same batch or stored procedure together. Interestingly,
when only set background on occurs, and set background off is
omitted, ASE will terminate the connection, much like
syb_quit() does:

1> sseett bbaacckkggrroouunndd oonn
2> go
CT-LIBRARY error:

ct_results(): network packet layer: internal net library
error: Net-Library operation terminated due to disconnect

This functionality can be wrapped in a stored procedure
sp_quit as follows:

1> use sybsystemprocs
2> go
1> create procedure sp_quit
2> as set background on
3> go
1> use master
2> go
1> sp_quit
2> go
CT-LIBRARY error:

ct_results(): network packet layer: internal net library
error: Net-Library operation terminated due to disconnect

16 I S U G T E C H N I C A L J O U R N A L

T I P S , T R I C K S A N D R E C I P E S F R O S Y B A S E A S E

This trick is identical to syb_quit() in the way the connection
is terminated, but there are a few differences. For example,
executing syb_quit() will immediately terminate the connec-
tion; when using set background on, execution seems to contin-
ue until the end of the batch before terminating the connec-
tion. Consider the following code:

1> set flushmessage on
2> pprriinntt ""BBeeffoorree ''sseett bbaacckkggrroouunndd oonn''""
3> set background on -- same as 'exec sp_quit'
4> print "After 'set background on'" -- goes to the errorlog
5> select "After 'print'" -- this output disappears
6> go
BBeeffoorree ''sseett bbaacckkggrroouunndd oonn''
CT-LIBRARY error:

ct_results(): network packet layer: internal net library
error: Net-Library operation terminated due to disconnect

When executing the above code, the following happens:
1. The print statement on line 2 is executed normally;
2. On line 3, set background on is executed, suppressing all

further output to the client;
3. The print statement on line 4 is executed; because set

background on is active, the output goes into the ASE
errorlog instead of to the client;

4. The select statement on line 5 is executed; because set
background on is active, all result sets disappear completely;

5. Finally, the end of the batch is reached and there are no
more statements to be executed. Because set background off
was not found in this batch, the connection is terminated
and processing stops.

Note that the statements in the remainder of the batch are
still executed after set background on. For this reason, this trick
cannot be used to replace syb_quit() for quickly exiting nested
SQL code as described earlier. It can be used for the other
purposes described for syb_quit() (i.e. Conditionally blocking
ASE access; Conditional script exit) as long as no further
processing is performed in the batch after set background on.

This “application” of set background has been possible since
at least ASE 11.0. No special permissions are required to
execute it, so it is available to all users.

You should be aware that set background can have peculiar
side effects in certain situations. I can imagine this is one
of the reasons why set background has officially remained
undocumented. Whenever you decide to use set background,
do so with care. ■

T H I R D Q U A R T E R 2 0 0 3 17

T I P S , T R I C K S A N D R E C I P E S F R O S Y B A S E A S E

